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5. Introduction

In polarized epithelial cells, components of the membrane fusion machinery, the t-SNAREs

syntaxin 2, 3, 4 and SNAP-23 are differentially localized at the apical and/or basolateral plasma

membrane domains. Surprisingly, all of these t-SNAREs redistribute to intracellular locations

when cells lose their cellular polarity during mammary carcinogenesis. Apical SNAREs re-localize

to the previously characterized vacuolar apical compartment (VAC) while basolateral SNAREs

redistribute to a novel organelle that appears to be the basolateral equivalent of the VAC. Both

'intracellular plasma membrane compartments' are associated with the actin cytoskeleton and

receive membrane traffic from cognate apical or basolateral pathways, respectively. These findings

demonstrate a fundamental shift in plasma membrane traffic towards intracellular compartments

while protein sorting is preserved when epithelial cells lose their cell polarity.
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6. Body

Traffic between membranous compartments is mediated by the SNARE machinery in

virtually all membrane traffic pathways investigated so far (14, 15, 27, 33). During vesicle

docking, membrane proteins on the vesicle (v-SNAREs) and the target membrane (t-SNAREs)

bind to each other to form a complex which ultimately leads to fusion of the lipid bilayers. One

aspect of the SNARE hypothesis is that successful membrane fusion requires the binding of

matching combinations of v- and t-SNAREs thereby ensuring the necessary specificity of vesicle

fusion. Accordingly, each membrane organelle and each class of transport vesicles should be

defined by a certain set of t- and v-SNARE isoforms. Many SNAREs have been identified to date

and protein sequence analysis has shown that v- and t-SNAREs of the currently known SNARE

sub-families are evolutionarily related to each other and belong to a common superfamily (41, 43).

It is conceivable that the specificity of vesicle fusion is not directly determined by t-SNARE/v-

SNARE interactions per se but rather by interactions involving larger complexes including

SNAREs and their regulatory proteins such as those of the rab and secl protein families (4, 12,

28).

Epithelial cells, including mammary cells, display an additional layer of complexity as they

are typically polarized and possess two distinct plasma membrane domains (6, 18, 20, 34, 44).

The apical and basolateral plasma membrane domains have different protein and lipid

compositions which reflect the different function of these domains. This plasma membrane

polarity is established and maintained by protein sorting and specific vesicle trafficking routes in

the biosynthetic and endocytic pathways. In agreement with the SNARE hypothesis, the apical

and basolateral plasma membrane domains of epithelial cells contain distinct t-SNAREs (42). Two

protein families have been identified as t-SNAREs, the syntaxin and SNAP-25 families. In MDCK

cells, syntaxins 3 and 4 are localized at the apical or basolateral plasma membrane, respectively

(21). Syntaxin 3 functions in transport from the trans-Golgi network as well as the endosomal

recycling pathway, both leading to the apical plasma membrane (22). Syntaxin 2 is localized to

both domains of MDCK cells (21), as is SNAP-23 (22), a ubiquitously expressed member of the

SNAP-25 family (30). SNAP-23 binds to syntaxins 3 and 4 in vivo (10, 36) and is involved in

biosynthetic and endocytic recycling and transcytotic pathways to both plasma membrane

domains in MDCK cells (19, 23). The subcellular localization of these SNAREs is generally very

similar in other epithelial cell lines and tissues although variations have been reported (5, 8-10, 32,

42).

Temporary or permanent loss of cell polarity is a common phenomenon during the

development of epithelial tissues (1, 35) as well as in a number of pathological conditions (1, 7,

20). It is largely unknown how apical and basolateral membrane traffic pathways behave in

epithelial cells that have lost or not yet acquired their cellular polarity under any of the above
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circumstances. This is a fundamental question in cell biology and in the biology of epithelial

cancers, such as breast cancer. For example, changes in these pathways may play an important

role in the acquisition of the invasive phenotype of tumor cells, e.g. by mistargeting of cell

adhesion molecules, or erroneous secretion of proteases that attack basement membrane and

extracellular matrix proteins. It is well established that the malignancy of epithelial-derived tumors

(carcinomas) correlates directly with the degree of de-differentiation. A hallmark of de-

differentiation or anaplasia is the loss of cellular polarity. A better knowledge of the changes in

membrane traffic pathways that occur when epithelial cells lose or gain cell polarity will help us

understand normal epithelial function as well as pathologic conditions.

In the present grant we have investigated the subcellular localization of plasma membrane

t-SNAREs, as part of the machinery accomplishing membrane traffic, in polarized vs. non-

polarized cells.

We studied localization of SNAREs in several lines of epithelial cells, where we could

manipulate their state of polarity. For mammary cells, we used the 3 lEG4 cell line, described

below. For comparison, we used Madin Darby canine kidney (MDCK) cells, as trafficking and

SNARE localization have been very well described in these cells. Basically, we have found almost

identical results for both cell types. The description of results below focuses primarily on MDCK

cells.

I am using a spectrum of to perturb polarity to various degrees and examine the effects on

traffic. For glucocorticoids, I use dexamethasone (dex; 1 tM), which is expected to increase

polarity. Addition of TGFc* (10 ng/ml) causes a loss of TER in Con8 cells, but I will investigate this

in 31EG4 cells. Given the antagonist effects of TGFcL and glucocorticoids, I am trying different

combinations including: no dex, or dex for 48 hours, then the addition of TGFa either basolaterally

or apically. TGFa and c-myc are synergistic, so that experiments will be designed first with the

over-expression of c-myc alone, then TGFc added to either the apical or basolateral media. The

presence of c-myc is not reported to decrease TER, therefore it will interesting to observe how they

differ in their response as compared to dexamethasone. Glucocorticoids are growth inhibitory, while

c-myc is growth promoting. C-myc will be expressed from the tetracycline responsive transactivator

system developed by Bujard and colleagues. The original version of this system involves

sequentially transfecting the cells with two plasmids, encoding first the tetracycline sensitive

iransactivator, and then the gene of interest (e.g. c-myc) under the control of a promoter that is

responsive to this transactivator. Cells are grown in the presence of tetracycline, which represses the

expression of the gene of interest. When tetracycline is removed, the gene of interest is turned on.

K. Mostov's group has successfully used this system in MDCK cells to obtain very tightly regulated

and highly inducible expression of a variety of genes.

We. observed that the previously characterized plasma membrane t-SNAREs in

MDCK and mammary cells undergo similar dramatic changes in subcellular localization depending
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on the degree of cellular polarity. Cells were plated at high density onto polycarbonate filters and

the localization of syntaxins 2, 3, 4, and SNAP-23, as well as the tight junction protein ZO-1,

were monitored at different times after plating. After 2 hours, the cells are irregularly shaped and

start to form cell-cell contacts. At this stage, all plasma membrane t-SNAREs are found

predominantly in intracellular vesicles in addition to a variable amount of plasma membrane

staining. In approximately 10% of the cells, large intracellular vacuolar structures can be observed.

After one day, the monolayer is confluent and uninterrupted circumferential tight junctions are

established. A substantial portion of all SNAREs has re-localized to the plasma membrane in a

polarized manner. Syntaxins 2 as well as SNAP-23 are found at both the basolateral and apical

plasma membrane in addition to some remaining intracellular labeling. Syntaxin 3 is absent from

the basolateral domain but localizes to the apical domain in addition to intracellular lysosomes as

established previously (5, 21). Syntaxin 4, in turn, is absent from the apical domain but has
partially re-localized to the basolateral domain. During the course of the experiment, until day 7,

the cells grow somewhat in height and form a straight apical surface. All of the SNAREs continue

to move to their final destination at their specific plasma membrane domains, however, even after

7 days some intracellular staining remains in each case as observed previously (21, 22).

This change in subcellular localization of plasma membrane t-SNAREs suggests that

membrane traffic pathways leading to the plasma membrane are fundamentally altered in epithelial

cells during the course of the establishment of cellular polarity.

The formation of a polarized epithelial layer can be prevented experimentally by the

inhibition of E-cadherin-mediated interactions between neighboring cells (1, 2, 13). Inhibition of

calcium-dependent homotypic E-cadherin binding by withdrawal of high calcium concentrations in

the medium keeps MDCK cells in a non-polarized state. It has been observed previously that,

when grown in low-calcium medium, MDCK cells form large intracellular vacuoles that bear

ultrastructural resemblance to the apical plasma membrane including the presence of microvilli and

an associated actin cytoskeleton. This compartment was termed 'vacuolar apical compartment' or

VAC (38). Similar vacuoles are found in a variety of carcinomas (16, 31, 40).

We studied the subcellular localization of plasma membrane SNAREs in MDCK cells grown

under these conditions. We also used the mammary cells grown under conditions where they lose

polarity, as described above. A high percentage (>50%) of the cells display one or more large

vacuolar compartments that are positive for the endogenous apical marker protein gp 135 and are

indistinguishable in appearance from previously published VACs (. Plasma membrane t-SNAREs

that normally localize to the apical domain (syntaxins 2, 3, SNAP-23), co-localize with gp135 in

these VACs. In contrast, the normally exclusively basolateral syntaxin 4 is excluded from gpl35-

positive VACs. Instead, in addition to small vesicles, syntaxin 4 is found in larger structures that

resemble VACs but exclude gp135. The SNAREs that are normally localized to both apical and.
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basolateral plasma membrane domains (syntaxins 2, 11, SNAP-23), can be found in large gp135-

negative structures (arrows) in addition to gp 135-positive VACs.

Non-polarized MDCK and mammary cells stained with antibodies against syntaxin 4 and

an endogenous 58 kDa basolateral plasma membrane protein (6.23.3). In addition to some plasma

membrane-staining, both proteins are localized in large intracellular compartments that overlap

significantly with each other (indicating that the syntaxin 4-positive compartment has a protein

composition similar to the basolateral plasma membrane of polarized cells.

Together, the data suggests that although 'apical' and 'basolateral' t-SNAREs are localized

intracellularly in non-polarized epithelial cells, they are nevertheless sorted to distinct

compartments. These intracellular compartments resemble the respective plasma membrane

domains due to the presence of 'apical' or 'basolateral' t-SNAREs as well as other plasma

membrane marker proteins and an actin-based cytoskeleton.

The presence of normally apical and basolateral plasma membrane t-SNAREs in cognate

intracellular compartments in non-polarized cells suggests that these SNAREs function in the

membrane fusion of vesicles from incoming transport pathways that are equivalent to the plasma

membrane-directed transport pathways in polarized cells. We investigated whether several

proteins whose trafficking in polarized MDCK cells is well characterized are targeted to the

syntaxin 3-positive VAC in non-polarized cells.

Together, these results strongly suggest that the intracellular VAC in non-polarized

MDCK cells is a true cognate compartment to the apical plasma membrane in polarized cells as

both contain an identical set of t-SNAREs and both receive membrane traffic from equivalent

biosynthetic and endocytic pathways.

In polarized epithelial cells t-SNAREs distribute to intracellular compartments when cell

polarity is lost or not yet established. To date the only functional information on the involvement

of syntaxin homologues in plasma membrane traffic in polarized cells is available for syntaxin 3

which plays a role in transport from the TGN and from apical endosomes to the apical plasma

membrane (17, 23). The exclusively basolateral localization of syntaxin 4 suggests that it is

involved in polarized pathways to this domain. Therefore, this surprising result strongly suggests

that membrane trafficking pathways that are normally directed to the plasma membrane in

polarized epithelial cells undergo a fundamental shift towards intracellular compartments upon

loss of cell polarity. This may have profound implications for our understanding of the

pathogenesis of diseases involving a loss of epithelial polarity, e.g. the mistargeting of basement

membrane proteins, proteases, integrins etc. that play a role in the pathogenesis of invasive and

metastatic carcinomas (1), or the mistargeting of ion transporters, growth hormone receptors etc.

in non-cancerous epithelial diseases such as polycystic kidney disease (25, 37). Also, during

tubule formation - e.g. in kidney development - epithelial cells temporarily loose their cellular

.polarity while cell-rearrangements occur (29).
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The presence of plasma membrane t-SNAREs on intracellular vacuoles in non-polarized

cells indicates that plasma membrane proteins and secretory proteins are targeted into these

vacuoles. Interestingly, we identified two distinct classes of vacuoles that can perhaps best be

characterized by the presence of the apical t-SNARE syntaxin 3 or the basolateral t-SNARE

syntaxin 4. Both compartments possess an actin cytoskeleton as shown by phalloidin staining.

This distinguishes them from endosomes or other organelles which typically do not possess a

prominent actin cytoskeleton but which is typical for the plasma membrane. Moreover, these

compartments receive membrane traffic from cognate apical or basolateral pathways, respectively.

This suggests that apical/basolateral sorting is preserved in non-polarized epithelial cells and leads

to specific intracellular organelles. It has been found previously that non-polarized, fibroblastic

cells also have the capability to sort apical and basolateral plasma membrane proteins (presumably

in the TGN) and transport them on separate routes to the identical plasma membrane (26, 45). A

major difference between non-polarized cells of epithelial and non-epithelial origin may therefore

be that in the former plasma membrane and secretory proteins are retained inside the cell rather

than delivered to the surface.
The vacuolar apical compartment has been described and characterized previously in non-

polarized MDCK cells and other epithelial cell lines as well as in a variety of carcinomas (3, 11,

38-40). In contrast, to our knowledge, the basolateral compartment that we identified here is a

novel organelle that has not been described previously, perhaps because of the lack of availability

of a marker protein such as syntaxin 4. What can be the possible function of "intracellular apical

and basolateral plasma membranes"?

These compartments are observed in epithelial cells that have lost their cellular polarity

temporarily (e.g. sparsely seeded cells that have not yet established cell contacts) or permanently

(e.g. when cell contacts are inhibited or in tumor cells). It is likely that many plasma membrane or

secreted proteins are still synthesized under these conditions. Re-directing these proteins (or

lipids) to intracellular compartments will prevent their secretion or their display at the cell surface.

This may be a protective mechanism as it would be undesirable or even harmful to the organism to

have certain proteins secreted into the interstitial space by individual epithelial cells that have lost

their cell contacts. A drastic hypothetical example may be accidental secretion of hydrolytic

enzymes by non-polarized pancreatic acinar cells. Indeed, a variety of hydrolytic enzymes that

are normally expressed at the apical plasma membrane of Caco-2 cells were found in VACs after

microtubule disruption (11). The finding that neither the apical nor basolateral vacuoles appear to

be degradative, lysosomal compartments indicates that proteins may be stored in them for later

use once cell contacts have been re-established. This is supported by the observation that VACs

can be rapidly exocytosed as a whole from MDCK cells after re-establishment of cell-cell contacts

(39) or after raising the intracellular cAMP concentration (3). A basolateral equivalent of the VAC

may be used to temporarily store proteins such as integrins. A major function of many epithelia is
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the directed transport of ions and solutes which is made possible by the proper apical or

basolateral localization of transporters and channels. The intracellular storage of these channels

and pumps may prevent accidental cell death due to excessive ion depletion or accumulation after

loss of cell polarity. Interestingly, the CFTR chloride channel, while apical in polarized HT-29

cells, localizes to an intracellular compartment in non-polarized HT-29 cells (24).

In conclusion, we have shown that upon loss of cell polarity epithelial cells re-localize

plasma membrane t-SNAREs and re-direct membrane trafficking pathways to intracellular cognate

apical and basolateral compartments. This is likely to be a general phenomenon in epithelia and

may play a fundamental role in the pathogenesis of epithelial diseases that involve a break-down

of cell polarity.

7. Key Research Accomplishments.
* Localization of SNARE proteins changes as the cells change the polarization.

* Apical syntaxins localize to a VAC compartment in depolarized cells.

* Basolateral syntaxins localize to a novel intracellular compartment.

8. Reportable outcomes.

None so far.

9. Conclusions.

A basic property of mammary cells and other epithelial cells is that they are highly

polarized. During oncogenesis polarity is lost, and in fact a hallmark of anaplasia is loss of

polarity. Polarity requires that the machinery for transporting proteins to the correct apical or

basolateral surface works correctly. We have begun to show how this is deranged in mammary

carcinogenesis.
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